
.
$

,
cow-%5zJq$137-

‘ LA-uR-95-3298

We:

Author(s):

Subdtteclto:

LosAlamos
NATIONAL LABORATORY

Shlaer-MellorObject-oriented Analysis and Reoursive
Design, an !Y’f&xveModem SoftwareDevelopment
Methodfw Developmentof ComputingSystems fm a
Large Physics Detector

T. Kozlowski,T. A. Carey,C. F. Maguirc,
D. Whitehouse,C. Witzig, and S. Sorensen

Co~erence ORComputingin High Energy Physics
Riode Janeiro, Brazil, September 1S-22, 1995

MASTER

... . ___
‘$

~

:.%. ,.S2GYG2 ----. -.-=
.7 .

: . ..- --”’. - . . ~-”
‘- —... :... _, -..:

LooAlamo Mend Lobmlory,m dttrfnotivo06tlm@quol~nlly on@yor, 10opcrsM bythoUnhjoroltyd Collfomla@ thoUS, Dopartmm of Sngfgy
undofoontraolW1740$4M48, BYomopmood mmMolo, thopubltwoffaogfwoamotthoU C Oovornmordfotm a nonmluwo, foyalty+ooiaonw 10
@kh w ?O#OduaIhOPWOhOdtom ofNW00MIMWt, of10allowMhofo10doM lo?US Oovomnonlw-, ThoLosAlmm MIIOMI Ltboralory
-~t~lMww*ti w-u**tiu*w ~dlMu.$, mmld8~y,

mm 040CMas
. ..*,-.. ,,.. , ,“, A&b 6- -h Mm nAMb bkbwlw aa I ikM mnwun H

Wnls !00!

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

,

SHLAER-MELLOR OBJECT-ORIENTED ANALYIS AND
RECURSIVE DESIGN, AN EFFECTIVE MODERN SOFTWARE

DEVELOPMENT METHOD FOR DEVELOPMENT OF
COMPUTING SYSTEMS FOR A LARGE PHYSICS DETECTOR

THOMAS KOZLOWSKI, THOMAS A. CAREY

Physics Division, Los AlamosiVutional Laboratory, Los Alamos, NAf875~5, USA

CHARLIE F. MAGUIRE

Physics Department, Vanderbilt University, Nashville, TN 97M5, USA

DAVID WHITEHOUSE, CHRIS WITZIG

Physw Department, Brookhavm National Labomtoy, Upton, IVY 11979, USA

SOREN SORENSEN

Department of Physics, University oj Tennessee, A’nozville, TN 97996-1800, USA

After evaluation of ceveral modem object-oriented methode for development of the corn.
putinc ~ystemefor the PHENIX detector ●t RHIC, we celected the Shlaer.Metlor Object-
Oriented Anatyoio and Recureive Deeign method ea the m-t appropriate for the needs
and development environment of ● large nucleu or high energy phyeics detector. This
paper dkuuee our ~pecitlc neede and environment, ow method eelection criterja, and
major featureo and components of the Shlaar-MeUor method,

1 PHENIX Detector Software Development Requirements

1.1 Scope and Environment O! PHEi41X Computing

The PHENIX detector under construction at the Relativistic Heavy Ion Collider
(RHIC) at Brookhswen Natiottttl Laboratory is typical in size and environment of
other large collider detectors. An important aspect is the ten subd~tectors under
development by different groups within the collaboration that mu .be integrated
(hardware and software) into the frameworks provided by core on-line and oflline
systems,

Detector up-time requirement and the long lifetime of the project require high
quality and reliable eoftware that meets functional and performance requirements
for detector operation, is relatively problem free at the outact, and is maintainable
over the lifetime of the project. The development process and methods adopted
must attpport a large computing effort, widely distributed geographically, and ac-
commodate integration of contributions from eubcystem groups and the use of im-
ported software,

1

.

.

The need for reliability, long term support, and integration of distributed devel-
opment activities led us to require a relatively formal development process that
incorporates defined work products, regular reviews and careful documentation,
Rather than trying to develop our own processes and methods, it was decided to
survey and take advantage of modern software engineering technologies. We expect
that relying on the experience of professionals in the software development industry
well beat help us meet development requirements and maximize the productivity of
the limited resources devoted to PHENIX computing.

The software engineering community has long recognized that the efforts ap-
plied to requirements analysis and design are important and have great leverage
on the efforts and coats of subsequent efforts in implemental ion and maintenance,
Therefore, selecting a formal method of analysis and design waa a high priority goal,

2 Modern Analysis and Design Methods

Driven by the need to increaae productivity and software reliability, the software
engineering community and the software development industry have developed and

used many methods for developing software, Drawing on ieaaons learned and ad-

vances in computing science and computing hardware, these methods have been
continually evolved, Some recent areu of intereat and activity are the total devel-
opment proceaa, object-orientation, and formal methods and notations in support of
analysis and design. Automation of elements of the development process hM been
a constant theme, and it is now becoming a reality with the advent of modern high
powered workstations in combination with more rigorous and complete methods
and notations,

[n the hat decade there haa been much research and development in object-
oriented analysis and design methods, and the discipline is maturing rapidly, Several
methods for object-oriented analysis and design are in wide use on real projects by
major software developers, Three of the most popular that are appropriate for large
real-time systems are: Booth Object. Oriented Analysis and Design 1, Rumbaugh
Object Modeling Technique (OMT) ‘, and Shlaer-Mellor Object-Oriented Analysis
and Recursive Design ’14, Recently the originators oft he Booth and OMT methods
have combined rcaourcee and plan to develop a new method combining featurea
from both predecesacm There is a wide range of CASE tool support for all popular
methods,

3 Selection of an Analysis and Design Method

S’jf Se/eclion Criferra and Conutroinls

Limited time and resources did not allow us to do an exhaustive survey and trial
uae of development methods, We committed ouraelvcw to a relatively rapid and
informal survey of major current development methods, relying on the opinions of
others and our own experiences (and prejudices) in coming up with a preliminary
eelection, After a period of initial use our selection will be re-evaluated,

2

.

.’

.

Table 1: Estimated Conformance of Evatuated Methode with Selection Criteria,

Criterion
Real-time and concurrency
Partitioning
Completeneea and consistency
Doesn’t aasume 00 implementation
Accommodates imported software
Compatible with iterative development
Widely and successfully used
Good CASE sumort exists

Booth Shlaer-Mellor OMT
medium high medium
medium hi~h high

low high low
low high low

medium high medium
high medium high
high high high
high high high

Our analysis and design method selection criteria included the following:

●

●

●

●

●

●

●

●

●

support of object-oriented analysis, design, and implementation

explicit support for modeling real-time applicatior,s and concurrency

effective partitioning of large systems for concurrent development

specific criteria for completeness and consistency

design or implementation not constrained to be object-oriented

accommodation of imported software and software systems

compatible with an iterative development proceaa

widely and succeeafully tteed

good CASE support

Selection uf Shlaer-Mellor 00A and Recursive Design

After studying the literature and Ueenet new~groupe, attending vendor presen-
tations, drawing on our own experiences in developing eoftware, and discuaaing
features and iaattee among oureelves, we provisionally selected the Shlaer.Mellor
method. This wruI admittedly an informal and eomewhat subjective process, Ta-
ble 1 summarize our results in applyirtg our criteris to the three methods,

We believe the Shlaer-Mellor method best meets om needs and environment,
We found some aspecte of the method particularly attractive:

● The explicit partitioning, vertically into attbject matter domains and horizon-
tally within domains into uulmyetemc, uimpliflee concurrent and distributed
development and permite effective uee of expertise in particular subject mat-
ters within the group, The explicit separation of the application domain from
the service, architecture and lmplemet~tation dotl~ains is useful becaume that
while in our case the application domain (detect,or and data acquisition hard-
ware, and operations) is relatively stable over the lifetime of the object, the

3

project can benefit over its lifetime from new and evolving technologies for
service, architecture, and implementation domains. On the other hand, if
there is a major change in the detector, it is likely that only the OOA model
of the application domain need be changed and the corresponding software
m-generated using the same architecture as before,

● The fact that the method explicitly includes well defined process steps and
work products, and rigorous rules and criteria for completeness and consis-
tency allow us to leverage off the considerable experience of the method’s
developers; otherwise, we would have to develop our own process to an equiv-
alent level of detail and refine it through use. There is anecdotal evidence
in the literature that developers that modified the Shlaer-Mellor process for
their own needs usually ended up re-inventing the original process. The rigor
and completeness of the models is a foundation for simulation via actual “ex-
ecution” of the models and automated code generation.

● Shlaer-hlellor is widely used by many important developers of real-time and
process control applications. The originators and their company (Project
Technology) have a long history as consultants, trainers, and contractors in
development of real-time software systems, They actually use their method
on a wide variety of projects,

A negative aspect of the Shlaer-Mellor method is that the simple and limited
notation (for example, the lack of aggreg~tion or composite objects in the formalism)
and rulee, often lead to large and complex models that are hard to comprehend,
However, there is a trade off here, since in the caae of a more complex notation a
much more complex set of rules (and probably extensions to the notation) would
be required to guarantee completeness and consistency, This rigor is an important
advantage of the method,

The Shlaer-Mellor method is not the best foundation for iterative development
in the style of “rapid prototyping”, because of the rigor and completeness required
for 00A models and the associated the effort required, The method is more suited
to a development style in which there are widely spaced releases, each of which ,s a
full implement~bion of a subset of the final system, perhaps with prototype service
and architectural domains in the earlier releases,

$08 Supper’i

The originators of the method, Sally Shlaer and Stephen Menw, founded a company
in 1985, Project Technology, which carries on their work, Th~ company continues
development and refinement of the method, along with connu)ting and method
training.

Several major CASE vendors provide relatively complete supp~wt for Shlaer-
Mellor, Some provide or soon will provide simulation and i de gen~,~t,ion tools,
Project Technology itself has rec?ntly ncquired a CASE tool vwi,!nr (Brl(ib noint),
We have provisionally selected the ObjectTeanl tool set from Cadre ‘~’:hnologies,
Inc., nrd are currently evaluating the Bridgepoint tool set,

4

t“-

4 Overview of Shlaer-Mellor 00A and Recursive Design

The rational behind the method is well stated in the goal of Project Technology: “a
systematic, rat ional and controllable software development process”. The method
haa developed and evolved over the years through from experience in building real-
time software systems. It is baaed on the central role and value of an “information
model” (the basis of its object-orientation).

4.1 Domains and Subsystems

The first step in creating Shlaer-Mellor models is to partition the system into “or-
thogonal” subject matter domains. A domain is “a real, hypothetical, or abstract
world inhabited by a distinct set of objects that behave according to rules and
policies characteristic of the domain” 4. Domains can be of the following typea:

● Application Domain: subject matter of the system from the perspective of
the user of the system,

* Service Domain: provides generic mechanisms and utility functions as required
to support the application domain (and other service domains),

● Architectural Domain: defines a “mapping” of 00A model elements to imple-
mentation domain elements, and provides generic mechanisms and structures
for managing data and control for the system as a whole,

● [implementation Domain: languages, networks, operating systems, libraries,

Domains may be developed according to Shlaer-hfellor 00A, implemented by “con-
ventional” (non. Shlaer-Mellor) methods, or may be imported software, The work
products of domain analysis m a graphical domain chart that shows the domains
and the client/server dependency relationships between them (“bridges”), and the
accompanying textual descriptions of each domain and bridge, An example of a
domain chart for a simple data acquisition application is shown in Figure 1, The
application domain is at the top, and the implementation domains are at the bet.
tom.

Analysis of domains begins by identifying the objects that makeup a domain’s
subject matter, The method permits large domains to be partitioned into “sub-
systems” which are clusters of related objects with minimal relations with other
subsystems, A subsystem is the scope for moat of the remaining modeling activi-
ties,

4$ Fundamental Atwa/#eiaMode18

The method specifies the system requirements of a domain by formally defining the
conceptual entities (objects), their attribute and relations, their behavior (Iifecy.
cle), and the operations they can perform, Note that the Shaler-Mellor method
uses the word “object” to designate an abstract type or “class”, and the word “in-
otance” to designate a particular instantiation, Three fundamental typee of models
for analysis are defined: information, st~te and process models.

5

Figure 1: Example of a Domain Chart

● Information Model:

For each subsystem an information model is created, It consists of a graphical
diagram describing subsystem objects, their relations and their attributes, and
accompanying formal textual descriptions of all objects, relations and their
attributes, The object diagram is similar to an Entity Relationship Diagram
(ERD), Attributes must be single variables (not structures); an object must
contain identifier attributea that uniquely identify an instance; and relations
are formalized by referential attributes. Supertype and subtype objects (“is a“
relationships) are part of the formalism. For each instance of a subtype object
there must be an instance of a supertype object and vice versa. Associative
objects are used to model many-to-many relationships and also relationships
that may have attributes _Ci@eL with them.

. State Models:

For each object that is identified aa having a Iifecycle (“active object”), a
state model is created using the Moore formalism (actions only occur on en-
tering a state), It consists of a graphical otate transition diagram describing
states, transit ions, events that cause transitions, actione OCC’wing on enter.
ing states, and the accompanying formal textual descriptions of events and
actions, Events provide a communication mechanism between objects, and
betw~en objects and the outside world. Data can be nsaociated with an event,
Actions can do calculations, create and delete instances, read and write at.
tributes, and generate events. The method includes a complete set of time
rules and event handling rulesi Examples of some rules are: actions are atomic;
multiple state machines (instances of an object) can execute simultaneously;
events are never lost; an event is used up when accepted by a state mactlinei

The method includes a special “aasigner state machine” that can be w
ciated with an object (usually an associative object) M a standard way to

6

.
,’

model “competitive” relationships (for example, assigning a resource to a re-
quester). Timer objects are included in the formalism to explicitly handle
time constraints,

● Process Models:

For each state that corresponds to a non-trivial action, an action dataflow
diagram (ADFD) is created. Process bubbles correspond to atomic process-
ing steps, The only allowed dat aflow labels are those identified with event
data or object attributes. Stores must be identified with objects, A process
model consists of a ADFD and accompanying formal textual descriptions of
the processes. Processes must be one of five types: accessors, event gener-
ators, transformations, tests, bridges (to other domains). Object attribute
“accessor processes” are a data communication mechanism between objects.
Each process is assigned to one object in the information model (for example,
an accessor object is assigned to the object which it acciwj. Many CASE
tools omit the more general process model, and instead rely on the state mode!
action descriptions to formally specify the processing,

● Derived modelw

The method defines several models that are derivable from the fundamental
modelo but provide specific views of the system model that are useful to an
analyst. At the domain level these are:

- Subsystem Relationship Model: relations between subsystems

- Subsystem Communication Model: event communica~ion between sub-
systems

- Subsystem Access Model: data (object attribute) accese between sub-
systems

At the subsystem level these are:

- Object Communication Model: event communication between objects

- Object Acceau Model: data (object attribute) accees between objects

d,9 Recursive De8ign

Design in the Shlaer.Mellor method resides in the choices for implementation of
the service and architectural domain& Recursive design refers to repeatedly ap-
plying the 00A proceaa to the application, service, and architectural domains, In
most implementation, 00A is probably not applied to all domaino since some may
be imported or developed by conventional methods, The ideal sequence ia to first
apply 00A to the application domain, This analysis determine requirement on
the application’s service domains, 00A is then applied to uervice domaine in an
appropriate order, Additional requirements on service domains may be determined
through this analysis, Performance requirements and constraints from software and
hardware environments determine the architectural domain requirements, The ar-
chitectural domain can also be analyzed using 00A, Once the architectural dom~in

7

—

Ed-db..—
ooAMooeu

L
Fiwe 2: Translation of 00A Models.

is implemented, it is applied (in reverse order) to the service and application do--. . .
mains. The result is an implementation of the syskem. In practice, becauae of prior
experience and exist ing knowledge in the development team, domains are usually
developed in parallel,

J.J Architecture Domain

In most methods a design and implementation is developed by adding implementa-
tion layer elements to the application models, without a clear or formal separation
of the layers, There is really only one model of the system. Shlaer-Mellor propo-
nents refer to this as “implementation by elaboration”, The Shlaer-Mellor method,
via the architecture, translates the 00A models into the implementation. This is
referred to as “implementation by translation”. The coat of implementation us-
ing translation, since it depends on the cost of a relatively fixed and independent
architecture, can be much lees than the cost of implementation using elaboration
which tends to be proportional to the size of the analysis model, In addition, one
can see that this paradigm lends itself well to automated translation (code gen-
eration), Such capabilities are beginning to appear in CASE tools that support
the Shlaar- Mellor method, This clear separation between analysis and design is a
unique feature of the Shlaer-Mellor method. The analysis model of the applica-
tion domain or a service domain is independent of the architecture(s) that will be
developed, Jn a few words the method permits building of “implementation free”
applications (OOA models) and “application free” implementations (architecture),
This promotes the reune and independent evolution of both applications and archi-
tectures, The relation between OOA models, architecture, and implementation is
shown schematically in Figure 2,

The components of an architecture have three forms:

● Mechanisms: code that can be linked into the final system that implement
elements of the formalism (state machines, event receiving queues, etci)

8

● Archetypes: templates for code fragments that are filled in (“populated”)
based on elements in the OOA model (for example, there may be archetypes
for C++ classes that have a direct relation to objects in the OOA model)

● Translation rules: describe how the archetypes are to be filled

The exact form and complexity of an architecture depends on the implementa-
tion environment. Architectures for multi-tasking multiple processor environments
and which use much imported software will be more complex and larger than archi-
tectures for single task, single processor, self-contained C++ environments. There is
no requirement that implementation languages be object-oriented. If they are not,
the architecture takes care of the mapping from the OOA models to the elements
of ncm-object-oriented implementation environment,

4.5 Some Implementation Issues

The independent architectural domain allows developers to make efficient use of
personnel and their expertise. Most developers do not have to concern themselves
with implementation issues at all; on the other hand, those who are expert in
operating system, language and networking technologies can apply that expertise in
the architectural domain, without requiring a detailed knowledge of the application.

The application independent nature of architectures allows whole architectures
to be reused with minimal modification, although some tayloring to specific envi-
ronments is probably always needed. It is an opportunity for vendors to market
architectures, Project Technology has begun to do this. “Off the shelf” architec-
tures, together with automated code generation tools from CASE vendors, could
lead to a very productive code development process,

Another paper in this conference s describes the specific application of the
Shlaer-Mellor method to PHENIX on-line computing. Our plans an experiences
will be discussed in more detail there,

Acknowledgments

This work haa been funded by the U.S, Department of Energy.

References

1, Grady Booth, Object Oriented And##is and Design, Second edition (The Ben-
jamin/Cummhgs Publishing Company, 1994J,

2, Jamea Rumbaugh et al, Object-Oriented Modeling and Design (Prentice Hall,
1991)!

3, Sally Shlaer and Stephen J, Mellor, Object Oriented Sy8!ems Analysis, Mod-
eling the World in Data (Yourdon Press, 1988).

4. Sally Shlaer and Stepl m J. Mellor, Object Ltjecycles, Modeling the World in
States (Yourdon Press, 1992),

5, Chris Witzig, et al, “The application of Shlaer-Mellor Object-Oriented Ana-
Iyis and Recursive Design to PHENIX On-Line Computing Systems” in the
proceedings of thin conference,

9

